<<8910111213>>
51.

The solution  of the differential equation (2x-3y+5)dx+(9y+6x-7) dy =0 , is 


A) 3x-3y+8 log |6x-9y-1|=c

B) 3x-9y+8 log |6x-9y-1|=c

C) 3x-9y+8 log |2x-3y-1|=c

D) 3x-9y+4 log |2x-3y-1|=c



52.

The differential equation representing the family of circles of constant radius r is 


A) $ r^{2} y"=[1+(y')^{2}]^{2}$

B) $ r^{2} (y")^{2}=[1+(y')^{2}]^{2}$

C) $r^{2} (y")^{2}=[1+(y')^{2}]^{3}$

D) $ (y")^{2}=r^{2}[1+(y')^{2}]^{2}$



53.

Area of the region (in sq units)  bounded by the curve y =$\sqrt{x}$, x= $\sqrt{y}$ and the lines x=1, x=4 , is 


A) $\frac{8}{3}$

B) $\frac{49}{3}$

C) $\frac{16}{3}$

D) $\frac{14}{3}$



54.

Consider the function $f(x)=2x^{3}-3x^{2}-x+1$     and the  intervals $I_{1}$=[-1,0],$I_{2}$= [0,1], $I_{3}$  =[1,2], $I_{4}$=[-2,-1]

Then,


A) f(x) =0 has a root in the intervals $I_{1}$ and $I_{4}$ only

B) f(x) =0 has a root in the intervals $I_{1}$ and $I_{2}$ only

C) f(x) =0 has a root in every interval except in $I_{4}$

D) f(x)=0 has a root in all the four given intervals



55.

If $y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+..........\infty}}}}$, then $\frac{dy}{dx}$= 


A) $\frac{y^{3}-x}{2y^{2}-2xy+1}$

B) $\frac{x+y^{3}}{2y^{2}-x}$

C) $\frac{y+x}{y^{2}-2x}$

D) $\frac{y^{2}-x}{2y^{3}-2xy-1}$



<<8910111213>>